Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu, ${ }^{\text {a }}$ *
 Çigdem Albayrak ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.090$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-6-[(2-Methoxyphenylamino)methylene]-4-methylcyclohexa-2,4-dien-1(2H)-one monohydrate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, is stabilized in the solid state as a keto-amine tautomer, with two strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The organic molecule is approximately planar, with a dihedral angle of $1.90(8)^{\circ}$ between the two carbocyclic rings. The water molecules lie on a twofold symmetry axis.

Comment

Salicylaldehyde Schiff bases derived from the reaction of salicylaldehyde or salicylaldehyde derivatives with aniline derivatives have been examined extensively (Stewart \& Lingafelter, 1959; Calligaris et al., 1972; Maslen \& Waters, 1975). Schiff base compounds display interesting photochromic and thermochromic features in the solid state and can be classified in terms of these properties (Cohen et al., 1964; Moustakali-Mavridis et al., 1980; Hadjoudis et al., 1987). Photo- and thermochromism arise via H -atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994). Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr \& Bouas-Laurent, 2003).

(I)

There are two possible types of intramolecular hydrogen bonds in salicylaldehyde Schiff bases, as exhibited by the ketoamine ($\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$) and enol-imine ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) tautomeric forms. Salicylaldehyde Schiff bases have been found in the keto form (Odabaşoğlu et al., 2003; Ersanlı et al., 2004; Koşar et al., 2004), in the enol form (Leardini et al., 1998; Karadayı et al., 2003; Odabaşoğlu et al., 2005) and as enol/keto mixtures (Nazır et al., 2000). The present X-ray investigation shows that the title compound, (I), prefers the keto-amine tautomeric form.

The molecular structure of (I) is shown with the atomnumbering scheme in Fig. 1. Selected bond lengths and angles are listed in Table 1. The organic molecule is situated on a general position, while water molecules O 5 and O 6 lie on a twofold axis. The $\mathrm{C} 8=\mathrm{C} 9, \mathrm{C} 10=\mathrm{O} 1$ and $\mathrm{C} 8-\mathrm{N} 1$ bond lengths verify the stabilization of the keto-amine tautomeric form.

Received 14 December 2005
Accepted 15 February 2006

These distances agree with the corresponding distances in our previous studies (Odabaşoğlu et al., 2003; Ersanlı et al., 2004; Koşar et al., 2004), which also show the keto-amine tautomeric form. The same bond lengths can be compared with the corresponding distances in $2-\{[$ tris(hydroxymethyl)meth-yl]aminomethylene\}cyclohexa-3,5-dien-1 $(2 H)$-one $[\mathrm{C}=\mathrm{O}=$ 1.3025 (16) \AA and $\mathrm{C}-\mathrm{N}=1.2952$ (18) \AA; Odabaşoğlu et al., 2003], which shows the keto-amine tautomeric form. The $\mathrm{C} 13-\mathrm{N} 2$ bond length in (I) is also in good agreement with the corresponding distances found in the literature, for instance, 1.4671 (18) (Zeller \& Hunter, 2004) and 1.456 (4) Å (Glidewell et al., 2004), for related compounds containing a nitro group.

Compund (I) displays a strong hydrogen bond (Table 2) involving atoms N1 and O1 (Filarowski et al., 2003; Yıldiz et al., 1998), a common feature of o-hydroxysalicylidene systems. In (I), the organic molecule forms two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds and molecules are linked through two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Fig. 2 and Table 2). Rings A (C1-C6), B (H1/N1/C8/C9/ $\mathrm{C} 10 / \mathrm{O} 1), C(\mathrm{C} 9-\mathrm{C} 14)$ and $D(\mathrm{H} 1 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 2)$ are almost planar; the dihedral angles between rings $A / B, A / C, A / D, B / C$, B / D and C / D are 0.27 (8), 1.90 (8), 1.57 (10), 2.16 (08), 1.70 (9) and $2.19(9)^{\circ}$, respectively (Nardelli, 1995).

Experimental

Compound (I) was prepared by refluxing a mixture of a solution containing 4-nitrosalicylaldehyde (3.5 mmol) in ethanol $(95 \%, 10 \mathrm{ml})$ and a solution containing 2-methoxyaniline (3.5 mmol) in ethanol $(10 \mathrm{ml})$. The reaction mixture was refluxed for 1 h and then left to cool. The powder product was recrystallized from ethanol. Single crystals were grown from methanol-water (9:1) (yield 84%; m.p. 465-466 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=290.27$
Monoclinic, C2/c
$a=26.099$ (3) A
$b=7.0229$ (6) A
$c=15.8664$ (19) \AA
$\beta=111.644$ (9) ${ }^{\circ}$
$V=2703.1(5) \AA^{3}$
$Z=8$

Data collection

Stoe IPDS-2 diffractometer

ω scans

Absorption correction: integration (X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.965, T_{\text {max }}=0.987$
8400 measured reflections
2637 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.090$
$S=0.83$
2637 reflections
201 parameters
> $D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 4712 reflections
> $\theta=1.4-26.9^{\circ}$
> $\mu=0.11 \mathrm{~mm}^{-1}$
> $T=296 \mathrm{~K}$
> Rod, brown
> $0.41 \times 0.28 \times 0.14 \mathrm{~mm}$

1116 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.077$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-32 \rightarrow 32$
$k=-7 \rightarrow 8$
$l=-18 \rightarrow 19$

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0445 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.26$ e \AA^{-3}

Figure 1
A view of (I), with the atomic numbering scheme and the hydrogen bonds represented as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code for H atoms of the water molecules: (ii) $-x, y,-z+\frac{1}{2}$.]

Figure 2
A packing diagram of (I), showing the hydrogen-bonding scheme (dashed lines).

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 6$	$1.384(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.412(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.438(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.412(3)$	$\mathrm{C} 10-\mathrm{O} 1$	$1.279(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.365(3)$	$\mathrm{C} 13-\mathrm{N} 2$	$1.448(3)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.297(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$115.6(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$	$129.1(2)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$121.0(2)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.4(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.2(4)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	1.02 (3)	1.67 (3)	2.553 (3)	143 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	1.02 (3)	2.17 (2)	2.572 (3)	101.1 (16)
O5-H5A $\cdot{ }^{\text {O }}{ }^{\text {i }}$	0.859 (10)	2.052 (12)	2.895 (3)	167 (3)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\text {i }}$	0.833 (10)	2.111 (13)	2.918 (3)	163 (3)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {ii }}$	0.93	2.46	3.386 (3)	174
$\mathrm{C} 8-\mathrm{H} 8 \cdots 5^{\text {iii }}$	0.93	2.83	3.511 (3)	131
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.58	3.306 (3)	135

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x,-y+1, z+\frac{1}{2}$.

organic papers

Atom H1, bonded to N 1 and involved in hydrogen bonding, as well as H atoms bonded to water O atoms were found in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.93 (aromatic) or $0.96 \AA$ (methyl) and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (aromatic C) and $1.5 U_{\text {eq }}$ (methyl C).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mays University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385403.

Cohen, M. D., Schmidt, G. M. J. \& Flavian, S. (1964). J. Chem. Soc. pp. 20412051.

Dürr, H. \& Bouas-Laurent, H. (2003). Photochromism: Molecules and Systems, pp. 685-712. Amsterdam: Elsevier.
Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M., Thöne, C. \& Erdönmez, A. (2004). Acta Cryst. C60, o133-o135.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Filarowski, A., Koll, A. \& Głowiak, T. (2003). J. Mol. Struct. 644, 187-195.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2004). Acta Cryst. C60, o33-o34.
Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, C. \& Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.
Koşar, B., Albayrak, Ç., Odabaşoğlu, M. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o246-o247.
Leardini, R., McDougald, G., McNab, H., Nanni, D. \& Parsons, S. (1998). Acta Cryst. C54, 1360-1362.
Maslen, H. S. \& Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.
Moustakali-Mavridis, I., Hadjoudis, B. \& Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. \& Ulkü, D. (2000). J. Mol. Struct. 524, 241-250.
Odabaşoğlu, M., Albayrak, Ç. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o425-o426.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stewart, J. M. \& Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. \& Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.
Yıldız, M., Kılıç, Z. \& Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.
Zeller, M. \& Hunter, A. D. (2004). Acta Cryst. C60, o415-o417.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

